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Abstract

We present a two-stage stochastic optimization intmléocate pre-positioned materials for
disaster relief in Brazil. Due to uncertainty bofidisaster severity and media influence, they are
represented as scenarios. Results show that ttieastic model generates more robust solutions,
particularly when demand cannot be completely lfatfi
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Introduction

The increase in the number of people affected by nktimarricanes, floods, earthquakes,
tsunamis) and anthropogenic disasters (terrortaclat technological or nuclear accident) has
required major efforts of relief organizations ardergency operation teams.

Several recent events have demonstrated the vblhgraof societies, such as the
tsunami and the earthquake in the Indian Ocear0@# 2and Japan in 2011, hurricanes in the
Caribbean, earthquakes in Pakistan in 2005, Cmr2008, in Haiti and Chile in 2010, and in
New Zealand in 2011, in Brazil, floods occurredthe Itajai valley in 2008, and Sao Luiz do
Paraitinga in early 2011, in addition to catastropéndslides in Rio de Janeiro in 2011.

Forecasts estimate that over the next 50 yearsiraladnd man-made disasters will
increase fivefold in number and severity (Thomasl dfopczak, 2005). There are also
predictions of increased frequency of storms irtlseastern Brazil as a result of global warming
(FAPESP, 2011), which makes preventive measuresssacry, including the pre-positioning of
relief supplies.

Relief supplies are basic elements that affectexgplpehave access to food and hygiene
products whereby in the first moments after theastesr. The agility and readiness in the



distribution of these items are necessary, espgarathe first 72 hours after the event, so that
rescue teams begin the activities and the victiamsthus stabilize their lives. Also included are
materials required for relief teams (responsextaramediately after the event.

The importance of pre-positioning relief supplieaswdemonstrated when Hurricane
Katrina devastated New Orleans in 2005. The lacktafed materials and the delay in arrival of
these supplies hampered further relief to the mistiProblems with legislation and difficulties in
defining responsibilities and authority (federal skate government) caused slow response
(Holguin-Veraset al, 2007).

In the network configuration, the strategy for ltieg, along the humanitarian logistics
supply chain, is characteristically relevant to tbgponse time of a disaster (Balcik and Beamon,
2008). Facility location decisions affect the penfance of the emergency relief operations in
disaster, since the number, location of distributeenters and the amount of supply reliefs
therein directly affect the response time and cobterved along the supply chain (Barbesa
al., 2010).

This paper proposes a mathematical model to sugpersions of locating relief supplies
facilities. An application in Brazil (Sdo Paulo @&pillustrates the effectiveness of the proposed
approach. Through a two-stage stochastic optindzatinodel (Dantzig, 1955), sites are
evaluated for installing distribution centers oé$k materials. This optimization process results
in proposing locations that minimize the operatloimal cost through opening or not relief
supply depots considering opening costs, and pesafor unmet demand. Uncertainty is
introduced through demand (defined by the disasteerity and magnitude and media coverage)
and accessibility ruptures in some areas (which le&y to inaccessible areas).

Literaturereview

Location of humanitarian facilities using Stochasfiptimization

Changet al. (2007) use stochastic optimization to determine ldcation of warehouses for
materials inventory, allocation and distributionreSources for rescue in cases of urban floods.
Due to uncertainty, the flood problem is formulatesl a two-stage stochastic programming
model where the first stage minimizes the distamresthe second stage performs the allocation
of inventory.

Rawls and Turnquist (2010) present a two-stagehagitc model for facility location
considering various scenarios that may occur irsaster, assigning each uncertainty in demand
and penalty for unmet demand. Due to the complesityhe problem Lagrangian L-shaped
heuristic was used for the solution.

Rawls and Turnquist (2011) used constraints ofityuaf service and average distance of
deposits up to demand nodes, performing an apjglicat the South of the United States. Later,
Rawls and Turnquist (2012) adapted the model foradyic allocation (72 hours in advance) for
short-term demands, which ensured meeting 100%omest service needs. The penalties for
unmet demand in the papers of Rawls and Turngaigde from 10 to 50 times the value of the
product. These valued showed that for a given praldituation, the change in value of penalties
affects the amount of deposits opened, as wehasotal cost, indicating that the subjectivity of
this value affects the problem solution.

Noyan (2012) incorporated the risk measurement metkd using two-stage stochastic
programming by introducing the concepts of expestalde of perfect information (EVPI) and
the value of stochastic solution (VSS) in the mostelicture. The value of the penalty was



established as 10 times (in some cases 5 timesjthe of the product. Benders decomposition
was used for the model solution. The results shothedimportance of the risk allocation in
locating humanitarian facilities.

Mete and Zabinsky (2010) evaluated the locatiormefdical supply warehouses and
inventory levels required for each medical soufest{stage decision) and delivery requirements
of supplies through a second stage vehicle routummich disaggregates the strategic information
in operational planning. The model captures speoiformation to each disaster and its possible
effects through the use of scenarios evaluatinggpegion, risk and uncertainty of the event.

Salmeron and Apte (2010) propose a two-stage sstichaodel in which the decision of
the first stage refers to the strategy of locasingply relief facilities and the second stagensef
to performing activities of transportation necegsty serve the population. The objective
function minimizes the number of deaths and thenages set are the uncertainties about the
location and severity of the event.

Bozorgi-Amiri et al (2011) developed a robust stochastic multiobjecprogramming
for logistics in emergency relief environment undgrcertainty. In their approach, not only
demand, but also the costs of supplies, the at¢quigdrocess and transport are considered as
uncertain parameters, there is also the possitfitg disruption of one of the deposits. The
objective function minimizes the total cost and geaes the unmet demand.

Murali et al (2012) consider a problem of locating capacitdtedlities to determine
points where medicines against a hypothetical arthttack in Los Angeles would be delivered
to the population. A special case is formulatech asaximum coverage model and decides the
locations facilities would be open, and the sugplantity assigned to each location, considering
uncertainty in demand. The results compare solsitissing heuristics location-allocation and
simulated annealing metaheuristic. For a quantit® facilities to be opened, the location-
allocation heuristic performed (89.66%) better rdgay coverage compared to simulated
annealing (82.45%).

A bi-objective model with stochastic demand wasrfolated by Tricoireet al. (2012).
The objectives are given by (i) costs of openingtribution centers and distribution to the
demand points and (ii) the unmet demand. To sdiledriteger programming problem, a branch
and cut heuristic was used. Real data applicatidenegal showed the viability of the approach.

Zhanget al (2012) approach the issue of secondary disastatsoccur after a major
natural disaster. Examples of these disasters magitbd as the events of T6hoku, Japan, in
2011, where a nuclear accident occurred after astdis of seismic origin. Stochastic demands
for the first and second disaster were addresseaninndividualized manner with different
probabilities for each case. The objective functi@nimizes the rescue costs.

Nolz et al (2011) formulated a multiobjective optimizatioroplem in the design of a
logistics system to ensure the adequate distributdb emergency assistance after natural
disasters, when damage to infrastructure can ugerthe delivery of humanitarian aid. The
problem is formulated encompassing three objectivections and solved using a genetic
algorithm. The first objective function minimizesetrisk measure; the second objective function
minimizes the sum of the distances between alirthabitants and their nearest service stations;
and the third objective function minimizes the tatavel time.

Comparing the stochastic solution
Noyan (2012) highlights that the EVPI - Expecteduéaof Perfect Information and the
VSS - Value of the Stochastic Solution (Birge aralveaux, 1997) are the two best-known



performance measures of stochastic solution, howewt all cited papers use these measures to
evaluate the stochastic solution. Table 1 shows these evaluation measures are approached in
the humanitarian logistics literature.

Table 1 - Performance evaluation of stochastic n®de

Author

Solution performance evaluation

Changet al. (2007)

Compaethe costs of the stochastic, deterministic andetuifmear
and standard deviation) solution. Difference betwaechastic and
deterministic = 0.647%.

Rawlsanc Turnquist
(2012)

Does 1ot address the performance of the solt. The solutiol was
complemented by Noyan (2012),

Meteanc Zabinsky
(2010)

Used the deterministic and the stochastic solutigtinout establising
a comparison.

Salmerén and Apte
(2010)

EVPI between 24% and 25% of twait-anc-se¢ solution,meanVSS
between scenarios = 47% of wait-and-see. In thiedass scenario
VSS= 256%.

Bozorg-Amiri et al.
(2011)

Compare deterministic solutions with stochasticiioh - average
gain = 3.8%.

Murali et al. (2012)

Focus on the solution methodology.

Tricoire et al.(2012)

Does not address the performance of theisol

Zhanget al. (2012)

Focus on algorithm, 26.4% gain over time.

Noyan (2012)

EVPI 54.05% to 58.42%, VSS 0.84% to 5.41%wait-anc-se¢
solution.

Nolz et al.(2011)

Performs a sensitivity analysis on thedabthe change in risk.

The mathematical model

The goal of the model proposed in this paper isetablishment of local installation of
one or more permanent distribution centers foragferof relief supplies aimed at aiding the
victims of natural disasters that may occur ingiae. The objective function minimizes the total
cost of attendance, composed of the costs of oggheénwarehouse, transportation and penalties
for unmet demand. Constraints can be grouped azcitgp(storage and transport), available
materials (inventory, donations, and purchases) mndmum level service (minimum met

demand).

The problem is modeled as two-stage stochastianggtion model and is based on
papers presented by Mete and Zabinsky (2010) amdlsRand Turnquist (2011). Figure 1
illustrates the structure of the model:
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Figure 1 - Model structure

Sets

I: candidate distribution centersil)
K: relief supplies (k€ K)

J: demand points ¢ J)

C: scenarios (€ C)

First stage decision variables:
xi: 1 if distribution center is opened, 0 otherwise
Sk. average inventory level of supply relleat distribution centar(kg)

Second stage decision variables:

t: amount ok to transport from distribution centeto the point of demangd under scenario
(kg)

% unmet demand &, at pointj under scenario (kg)

cof, :amount ok purchased, allocated in distribution centemder scenario (kg)
co_auxg.auxiliary binary variable to make purchases ohk/is necessary

Parameters:

Scenario non-dependent:

Gi: annual cost of installation and operation ofriisttion centei ($)
Ex: amount available of suppky(kg)

Lik: maximum storage capacity bfn distribution center (kg)

NEi: minimum annual inventory dfin distribution center (kg)
QDmax maximum number of distribution centers to be aukn
QDpin: minimum number of distribution centers to be agukn

FV, : weight x volume conversion factor {rhkg)



M : large number for making purchases of suppliesly if necessary

Scenario dependent:

CT;5: transportation cost from distribution cenit¢o demand poirtunder scenario ($/kg)
Wi, penalty per unit ok not supplied to demand pointinder scenario ($ / kg)

DN{,: amount of donations d&freceived in distribution centeunder scenario (kg)

D¢, demand ok in demand pointunder scenario (kg)

Af: binary parameter regarding the accessibility istridhution centeri (1 - accessible, 0 not
accessible) under scenado

CPS: transportation capacity (by weight) from disttiion centeri to demand poinf under
scenariac

Cv5: transportation capacity (by volume) from disttibn centeri to demand poinf under
scenaricc ()

DMING,: minimum demand df to be supplied at demand poiptunder scenario (kg)

COT, : contractual limit established for purchase,afnder scenario (kg)

First stage objective function:
Minimize the [(operating cost of distribution cersle+ (expected value of the solution of the
second stage function)]

minz G;x;+E; [Q(.’X’,S, Cj] (1)

First stage constraints:
Constraint (2) establishes that, for an item k,dh®unt stored at every distribution center can
not exceed the maximum amount available.

Zsi.kggk A+ kEK

Constraint (3) limits the inventory level by thepeaity of distribution centar

(2)

L, x, =5, V i€LkeEK (3)
Constraint (4) limits the minimum inventory of tlhem k to open a distribution center
NE, x, <s,, V i€ELkEK ()
gggﬁéﬁlint (5) and (6) defines the maximum and mimh number of distribution center to be

leg @Dpux ¥ IEI
- (5)

inz QD,.. ¥V i€l
1 (6)

Second stage objective function:
Minimize [(transportation cost under scenarte penalty for unmet demand under scena)jo
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Second stage constraints:
Constraint (8) ensures that the relief supbkljo be transported fromto demand poinf is
available at

th},{_ Sp TDNG, + cof,V i€LkEKceC (8)

1
Constraint (9) calculates the unmet demankliofj under scenario
}i:D}i—Zuk}lc'ﬁ’ JELKkEK,cEC 9)

Constraint (10) ensures that the relief sugply be transported fromto demand pointis at the
distribution center opened by x

Ly x; = tie A V IELKkEK cEC (10)

Constraint (11) ensures the transport capacity éight of supplyk

Z tie < CP;V i€lLjE],cEC (11)
Constraint (12) ensures the transport capacitydiyme of supplk
Z tie XFV, = CVg V i€lLje],ceC (12)

k

Constraint (13) ensures that a minimum demaridatfthe demand poifptis met.

tf. AT =DMINS V jE k€K, ceC (13)

i

Purchases:
Constraint (14) establishes a condition for purstaselief suppliek: co_aux = 0 if Demand -
Inventory — Donations > 0

(1—co_ auxij:bZD}i Z ZDka‘v‘kEKCEC (14)

Constraint (15) deflnes when no purchase is reqdesb_aux = 1 if Inventory + Donations —
Demand >0

coauka?ZSik+ZDka ZDF‘v’kEK ceC (15)

Constraint (16) defines purchase of relief sugpdynly if co_aux =0
cof, =(1— coauxi)M V i€Lk€eK,ceC (16)

Constraint (17) ensures that the purchase of segklis allocated to the distribution center
opened by x

COT x;, = cof, V IELKEK,cEC a7)



Constraint (18) ensures total purchase of suplocated to each distribution centetoes not
exceed the contractual total amount under scegario

COT¢ = Zcofk v kEK,ceC (18)

Constraint (19) ensures that the purchase of segipis performed only after the consumption
of inventory and the donation received.in

Zcofk EZD}FJ{—ZSH{—ZDN;{—Fco_aux;M VYVEkeEK cel (19)
i I i i

Constraint (20) and (21) defines non-negativity bimary variables, respectively.

sik,t%k,ﬂi,cofk =0 ¥V iel,je]lkeK,cel (20)
Binary

x;,co_auxy €{01} V i€eLkEK,ceC (21)
Case study

The proposed optimization model is applied to aecstdy in the Sao Paulo State
(Brazil) to evaluate the techniques used and theltee The region was chosen because of the
historical data and geographic information ava#alaind mainly because it is a region prone to
natural disasters, as in recent events in thesattfeQueluz (2000) and S&o Luiz do Paraitinga
(2010).

Five local candidates to distribution center lomatare considered: Sdo Paulo, Cagapava,
Sé&o José dos Campos, Taubaté, and Tremembé. Ttessevare chosen because they already
have Civil Defense operations and are situatedéations with a history of few accidents, thus
less likely to rupture.

The scenarios:

The scenarios were established according to theriggvand magnitude of disasters
(medium, large, and catastrophe). In addition diselosure in the media was considered at three
levels (low, medium, or large). The media playss kole in a disaster, especially in mobilizing
volunteers and donations (Arnold, 2011). Anothersideration is possible disruptions that may
affect the accessibility of supply channels to et sites, changing costs of transport and
supply. Table 2 shows the probability of scenarios

Table 2 - Probability of scenarios

Medium Large Catastrophe
Low dissemination by media 0.2 0.02 0.01
High dissemination by media 0.3 0.1 0.3
High dissemination by media
and ruptures 0 0.01 0.06

Results and discussion



The model was implemented using the software AIMBIE1l, CPLEX solver 12.3 in
CPU Intel Core i3® 2310M 2.1 GHz, 4 Gb RAM, 64-berational system Windows7 ®.

Table 3 shows the results of deterministic and h&tstic models. The deterministic
solution was obtained using the weighted averagé®fparameters to a 5-year horizon and a
value of penalty equal to 5 times the value of filegght. The cost of penalties is the largest
component of the total cost. This finding is du¢he lack of materials. Even in the deterministic
model, where the reduction of unmet demand occuestd the absence of random parameters
(uncertainty), this cost is high which means the turrent Civil Defense operation are not
adapted even if to the average disaster levehdrstochastic solution, as well as in deterministic
solution, the values obtained show that the pesgaltrongly influence the results due to unmet
demand.

Table 3 — Results of the deterministic and stoahasbdels

Deter ministic (R$) Stochastic (R$)
gg‘;gsff:;en 63,000.0( 18,000.0(
Transportation costs 30,664 166 25,065.72
Penalties costs 200,38163 331,532.33
Total cost 294,046.19 374,598.06
Distribution centers openedl S&o Paulo Séo Paulo
Taubaté

Could also be observed, by the results, that antpédium disaster could the demand be
met, although donations and purchased materiaislirtg 40.4% (by weight) of total demand,
were not fully used due to capacity constraintdegosits. Another significant cost is fixed cost
for opening deposits. The lowest relative coshesdost of transportation.

Comparison of deterministic and stochastic solwgion

The EVPI and VSS values were calculated and cordpaith the results by Noyan
54.05% to 58.42 for EVPI and 0.84% to 5.41% for V@ the results achieved by Salmeron
and Apte (2010) who obtained EVPI between 24% abéo 2and VSS s between 47%
(percentage values relative to wait-and-see saiutidonsidering that smaller EVPI indicates a
better solution and higher VSS indicates a betikrtion, and that the VSS value depends on the
value of the penalties, the model shows good re$oiftEVPI, despite requiring a refinement of
of the criteria adopted for values of penaltiesiclwlwould provide an improvement in the value
of VSS.

Conclusions

This paper presented a problem of prepositioningliséster relief supply decisions in
Brazil through stochastic modeling. The resultsnstimat the existing infrastructure in S&do Paulo
state is not able to support the demand of a varyel catastrophic disaster. The stochastic
modeling shows that the main component is the peoakts, consequently, the outcome of the
model is extremely sensitive to this value. Theitsssuggest that only one distribution center is
used to supply relief supplies. The distributiontee currently existing in the city of Sdo Paulo



would be used for this purpose, however, in casgisstiptions in access to the deposit, another
site is needed.
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